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Abstract
A 1996 paper by the author, Peter Borwein and Simon Plouffe showed that any math-

ematical constant given by an infinite series of a certain type has the property that its
n-th digit in a particular number base could be calculated directly, without needing to
compute any of the first n−1 digits, by means of a simple algorithm that does not require
multiple-precision arithmetic. Several such formulas were presented in that paper, includ-
ing formulas for the constants π and log 2. Since then, numerous other formulas of this
type have been found. This paper presents a compendium of currently known results of
this sort, both formal and experimental. Many of these results were found in the process
of compiling this collection and have not previously appeared in the literature. Several
conjectures suggested by these results are mentioned.
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work is supported by the Director, Office of Computational and Technology Research, Division of Math-
ematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract
number DE-AC03-76SF00098.
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1. Introduction
This is a collection of formulas for various mathematical constants that are of the

form similar to that first noted in the “BBP” paper [3]. That article presented the
following formula for π (which was discovered using Ferguson’s PSLQ integer relation
finding algorithm [10, 4]):

π =
∞∑

k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
(1)

It was shown in [3] that this formula permits one to calculate the n-th hexadecimal or
binary digit of π, without computing any of the first n − 1 digits, by means of a simple
algorithm that does not require multiple-precision arithmetic. Further, as shown in [3],
several other well-known constants also have this individual digit-computation property.
One of these is log 2, based on the following centuries-old formula:

log 2 =
∞∑

k=1

1

k2k
(2)

In general, any constant C that can be written in the form

C =
∞∑

k=0

p(k)

q(k)bk
,

where p and q are integer polynomials, deg(p) < deg(q), and p(k)/q(k) is nonsingular for
nonnegative k, possesses this individual digit-computation property. Note that formula 1
can be written in this form, since the four fractions can be combined into one, yielding

π =
∞∑

k=0

1

16k

47 + 151k + 120k2

15 + 194k + 712k2 + 1024k3 + 512k4

Since the publication of [3], other papers have presented formulas of this type for
various constants, including several constants that arise in quantum field theory [7, 8, 5].
More recently, interest in BBP-type formulas has been heightened by the observation that
the question of the statistical randomness of the digit expansions of these constants can be
reduced to the following hypothesis regarding the behavior of a particular class of chaotic
iterations [5]:

Hypothesis A (from the paper [5]). Denote by rn = p(n)/q(n) a rational-polynomial
function, i.e. p, q ∈ Z[X]. Assume further that 0 ≤ deg p < deg q, with rn nonsingular
for positive integers n. Choose an integer b ≥ 2 and initialize x0 = 0. Then the sequence
x = (x0, x1, x2, . . .) determined by the iteration:

xn = (bxn−1 + rn) mod 1.

either has a finite attractor or is equidistributed in [0, 1).
Assuming this hypothesis, it is shown in [5] that any BBP-type constant is either

normal to base b (i.e., any n-long string digits appears in the base b expansion with
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limiting frequency b−n), or else it is rational. No proof of Hypothesis A was presented
in [5], and indeed it is likely that Hypothesis A is rather difficult to prove. However,
it should be emphasized that even particular instances of Hypothesis A, if established,
would have interesting consequences. For example, if it could be established that the
specific iteration given by x0 = 0, and

xn = (2xn−1 +
1

n
) mod 1

is equidistributed in [0, 1), then it would follow that log 2 is normal to base 2. In a similar
vein, if it could be established that the iteration given by x0 = 0 and

xn =

(
16xn−1 +

120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

)
mod 1

is equidistributed in [0, 1), then it would follow that π is normal to base 16 (and thus to
base 2 also).

One additional impetus for the study of BPP-type constants comes from a recent paper
by Lagarias [13], who demonstrates a connection to G-functions and to a conjecture of
Furstenberg from ergodic theory. Lagarias’ analysis suggests that there may be a special
signficance to constants that have BBP-type formulas in two or more bases — say both
a base 2 and a base 3 formula.

This paper is a compendium of the growing set of BBP-type formulas that have been
found by various researchers. Part of these formulas are collected here from previously
published sources. In other cases, formulas whose existence has been demonstrated in the
literature are presented here explicitly for the first time. Still others are new, having been
found using the author’s PSLQ program [4] in the course of this research.

The PSLQ integer relation algorithm [10] or one of its variants [4] can be used to find
formulas such as those listed in this paper as follows. Suppose, for example, that it is
conjectured that a given constant α satisfies a BBP-type formula of the form

α =
1

r

∞∑

k=0

1

bk

(
a1

(kn + 1)s
+

a2

(kn + 2)s
+ · · · + an

(kn + n)s

)
,

where r and ak are unknown integers, for a specified selection of the parameters b, s and
n. Then one calculates the vector (

∑
k≥0 1/(bk(kn + j)s), 1 ≤ j ≤ n), as well as α itself,

to very high precision and then gives this (n + 1)-long vector (including α at the end)
to an integer relation finding program. If a solution vector (aj) is found with sufficiently
high numerical fidelity, then

α =
−1

an+1

∞∑

k=0

1

bk

(
a1

(kn + 1)s
+

a2

(kn + 2)s
+ · · ·+ an

(kn + n)s

)

(at least to the level of numeric precision used).
This compendium is not intended to be a comprehensive listing of all such formulas

— ordinarily a formula is not listed here if
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1. it is a telescoping sum.

2. it is a formal rewriting of another formula on the list.

3. it can be derived by a straightforward formal manipulation starting with another
formula in the list.

4. it is a linear combination of two or more formulas already in the list.

Item 1 refers to a summation such as

S =
∞∑

k=1

1

bk

(
b2

k
− 1

k + 2

)
,

which, if split into two summations, has the property that the terms of the first series
cancel with offset terms of the second series, so that S reduces to a rational number (in
this example, S = b + 1/2). Item 2 refers to the fact that a formula with base b and
length n can be rewritten as a formula with base br and length rn. Item 4 refers to the
fact that the rational linear sum of two BBP series can, in many cases, be written as a
single BBP series. This is clear if the two individual series have the same base b. If one
has base br and the other has base bs, their sum can be written as a single BBP series
with base blcm(r,s) [5]. Along this line, many of the formulas listed below possess variants
that can be obtained by adding to the listed formula a rational multiple of one of the zero
relations listed in Section 11.

The formulas are listed below using a notation introduced in [5]:

P (s, b, n, A) =
∞∑

k=0

1

bk

n∑

j=1

aj

(kn + j)s
(3)

where s, b and n are integers, and A = (a1, a2, · · · , an) is a vector of integers. For
instance, using this notation we can write formulas 1 and 2 more compactly as follows:

π = P (1, 16, 8, (4, 0, 0,−2,−1,−1, 0, 0)) (4)

log 2 =
1

2
P (1, 2, 1, (1)) (5)

In most cases below, the representation shown using this notation is a translation from
the original source. Also, in some cases the formula listed here is not precisely the one
mentioned in the cited reference — an equivalent one is listed here instead — but the
original discoverer is given due credit. In cases where the formula has been found experi-
mentally (i.e., by using the PSLQ integer relation finding algorithm), and no formal proof
is available, the relation is listed here with the

.
= notation instead of an equal sign.

The P notation formulas listed below have been checked using a computer program
that parses the LATEXsource of this document, then computes the left-hand and right-hand
sides of these formulas to 2000 decimal digit accuracy.

Additional contributions to this compendium are welcome — please send a note to
the author at dhbailey@lbl.gov.
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2. Logarithm Formulas

Clearly log n can be written with a binary BBP formula (i.e. a formula with b = 2m

for some integer m) provided n factors completely using primes whose logarithms have
binary BBP formulas — one merely combines the individual series for the different primes
into a single binary BBP formula. We have seen above that log 2 possesses a binary BBP
formula, and so does the log 3, by the following reasoning:

log 3 = 2 log 2 + log
(
1 − 1

4

)
= 2

∞∑

k=1

1

k2k
−

∞∑

k=1

1

k4k

=
1

2

∞∑

k=0

1

4k

(
2

2k + 1
+

1

2k + 2

)
− 1

4

∞∑

k=0

1

4k

(
2

2k + 2

)

=
∞∑

k=0

1

4k

(
1

2k + 1

)
= P (1, 4, 2, (1, 0)) (6)

In a similar manner, one can show, by examining the factorization of 2n +1 and 2n−1,
where n is an integer, that numerous other primes have this property. Harley [11] further
extended this list of primes by writing

Re
(
log

(
1 ± 1 + i

2n

))
=

(
1

2
− n

)
log 2 +

1

2
log(22n−1 ± 2n + 1),

where Re denotes the real part. He noted that the Taylor series of the left-hand side
can be written as a binary BBP-type formula and then applied Aurefeuille’s factorization
formula

24n−2 + 1 = (22n−1 + 2n + 1)(22n−1 − 2n + 1)

to the right-hand side. More recently, Jonathan Borwein has observed that both of these
sets of results can be derived by working with the single expression

Re

(
log

(
1 ± (1 + i)k

2n

))
.

A preliminary list of primes p such that log p has a binary BBP formula was given in
[3]. This list has now been augmented by the author to the following:

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 73, 109, 113, 127, 151,

241, 257, 337, 397, 683, 1321, 1613, 2113, 2731, 5419, 8191, 43691, 61681,

87211, 131071, 174763, 262657, 524287, 2796203, 15790321, 18837001,

22366891, 4278255361, 4562284561, 2932031007403, 4363953127297,

4432676798593 (7)

This list is certainly not complete, and it is unknown whether or not all primes have
this property, or even whether the list of such primes is finite or infinite. The actual
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formulas for log p for the primes above are generally straightforward to derive and are not
shown here.

One can also obtain BBP formulas in non-binary bases for the logarithms of certain
integers and rational numbers. One example is given by the base ten formula 46 below,
which was used in [3] to compute the ten billionth decimal digit of log(9/10).

3. Arctangent Formulas

Shortly after the original BBP paper appeared in 1996, Adamchik and Wagon observed
that [1]

tan−1 2 =
1

8
P (1, 16, 8, (8, 0, 4, 0,−2, 0,−1, 0)) (8)

More recently, binary BBP formulas have been found for tan−1 q for a large set of rational
numbers q. These experimental results, which were obtained by the author using the
PSLQ program, coincide exactly in the cases studied so far with the set of rationals given
by q = |Im(T )/Re(T )| or |Re(T )/Im(T )|, where

T =
m∏

k=1

(
1 ± (1 + i)uk

2vk

)wk

. (9)

The arctangents of these q clearly possess binary BBP formulas, because Im(log T ) de-
composes into a linear sum of terms, the Taylor series of which are binary BBP formulas.
The author is indebited to Jonathan Borwein for this observation. See also [6, pg. 344].
Alternatively, one can write 9 as

T =
m∏

k=1

(
1 ± i

2tk

)uk
(
1 ± 1 + i

2vk

)wk

(10)

for various m-long nonnegative integer vectors t, u, v, w and choices of signs as shown.
For example, setting t = (1, 1), u = (1, 1), v = (1, 3), w = (1, 1), with signs (1,−1,−1, 1),
gives the result T = 25/32−5i/8, which yields q = 4/5. Indeed one can obtain the formula

tan−1
(

4

5

)
=

1

217
P (1, 220, 40, (0, 219, 0,−3 · 217,−15 · 215, 0, 0, 5 · 215, 0, 215, 0,

−3 · 213, 0, 0, 5 · 210, 5 · 211, 0, 211, 0, 210, 0, 0, 0, 5 · 27, 15 · 25, 128, 0,

−96, 0, 0, 0, 40, 0, 8,−5,−6, 0, 0, 0, 0)) (11)

In this manner, it can be seen that binary BBP formulas exist for the arctangents of
the following rational numbers. Only those rationals with numerators < denominators ≤
50 are listed here.

1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/7, 3/7, 4/7, 6/7,

1/8, 7/8, 1/9, 2/9, 7/9, 8/9, 3/10, 2/11, 3/11, 7/11, 8/11, 10/11,

1/12, 5/12, 1/13, 6/13, 7/13, 9/13, 11/13, 3/14, 5/14, 1/15, 4/15,

8/15, 1/16, 11/16, 13/16, 15/16, 1/17, 6/17, 7/17, 11/17, 15/17,
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16/17, 1/18, 13/18, 4/19, 6/19, 7/19, 8/19, 9/19, 11/19, 17/19,

1/21, 16/21, 3/22, 7/22, 9/22, 19/22, 2/23, 4/23, 6/23, 7/23,

11/23, 14/23, 15/23, 7/24, 11/24, 23/24, 13/25, 19/25, 21/25,

7/26, 23/26, 5/27, 11/27, 2/29, 3/29, 15/29, 17/29, 24/29, 28/29,

17/30, 1/31, 5/31, 8/31, 12/31, 13/31, 17/31, 18/31, 22/31, 27/31,

1/32, 9/32, 31/32, 1/33, 4/33, 10/33, 14/33, 19/33, 31/33, 32/33,

7/34, 27/34, 13/35, 25/36, 5/37, 9/37, 10/37, 16/37, 29/37, 36/37,

1/38, 5/38, 13/38, 21/38, 20/39, 23/39, 37/39, 9/40, 3/41, 23/41,

27/41, 28/41, 38/41, 11/42, 19/42, 37/42, 6/43, 19/43, 23/43,

32/43, 33/43, 7/44, 23/44, 27/44, 3/46, 9/46, 17/46, 35/46, 37/46,

1/47, 13/47, 14/47, 16/47, 19/47, 27/47, 19/48, 3/49, 8/49, 13/49,

18/49, 31/49, 37/49, 43/49, 29/50, 49/50 (12)

Note that not all “small” rationals appear in this list. For instance, it is not known
whether tan−1(1/6) possesses a binary BBP formula. For that matter, it has not been
proven that formulas 9 and 10 above generate all such rational numbers, although this is
a reasonable conjecture.

One can obtain BBP formulas in non-binary bases for the arctangents of certain ra-
tional numbers by employing appropriate variants of formulas 9 and 10.

4. Other Degree 1 Binary Formulas

We present here some additional degree 1 binary BBP-type formulas (in other words,
in the P notation defined in equation 3 above, s = 1, and b = 2m for some integer m > 0).

π =
1

4
P (1, 16, 8, (8, 8, 4, 0,−2,−2,−1, 0)) (13)

π = P (1,−4, 4, (2, 2, 1, 0)) (14)

π
√

2 =
1

8
P (1, 64, 12, (32, 0, 8, 0, 8, 0,−4, 0,−1, 0,−1, 0)) (15)

π
√

3 =
9

32
P (1, 64, 6, (16, 8, 0,−2,−1, 0)) (16)

√
2 ln(1 +

√
2) =

1

8
P (1, 16, 8, (8, 0, 4, 0, 2, 0, 1, 0)) (17)

√
2 tan−1

(
1√
2

)
=

1

8
P (1, 16, 8, (8, 0,−4, 0, 2, 0,−1, 0)) (18)

Formula 13 was first found by Ferguson [10], while 14, which is the alternating sign
equivalent of 13, was found independently by Hales and by Adamchik and Wagon [1].
Technically speaking, these formulas can be obtained from the original BBP formula for
π (formula 1) by adding 1/4 times relation 52 of Section 11, but they are included here
for historical interest, since their discovery predated the discovery of relation 52. Formula
15 appeared in [3]. Formulas 16, 17 and 18 are due to Knuth [12, pg. 628].
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5. Degree 2 Binary Formulas

Here are some degree 2 binary formulas (i.e., s = 2, and b = 2m for some integer
m > 0). The constant G here is Catalan’s constant, namely G = 1− 1/32 +1/52 − 1/72 +
· · · = 0.9159655941 . . ..

π2 = P (2, 16, 8, (16,−16,−8,−16,−4,−4, 2, 0)) (19)

π2 =
9

8
P (2, 64, 6, (16,−24,−8,−6, 1, 0)) (20)

log2 2
.
=

1

6
P (2, 16, 8, (16,−40,−8,−28,−4,−10, 2,−3)) (21)

log2 2 =
1

32
P (2, 64, 6, (64,−160,−56,−40, 4,−1)) (22)

G − 1

8
π log 2 =

1

16
P (2, 16, 8, (8, 8, 4, 0,−2,−2,−1, 0)) (23)

π log 2
.
=

1

256
P (2, 212, 24, (212,−213,−51 · 29, 15 · 210,−210, 39 · 28, 0,

45 · 28, 37 · 26,−29, 0, 3 · 28,−64, 0, 51 · 23, 45 · 24, 16, 196, 0,

60,−37, 0, 0, 0)) (24)

π
√

3 log 2 =
1

128
P (2, 212, 24, (9 · 29,−27 · 29,−9 · 211, 27 · 29, 0, 81 · 27,

9 · 26, 45 · 28, 9 · 28, 0, 0, 9 · 26,−72,−216, 9 · 25, 9 · 26, 0, 162,

−9, 72,−36, 0, 0, 0, )) (25)

G
.
=

1

210
P (2, 212, 24, (210, 210,−29,−3 · 210,−256,−211,−256,

−9 · 27,−5 · 26, 64, 64, 0,−16, 64, 8,−72, 4,−8, 4,−12, 5,

4,−1, 0)) (26)

Formulas 19, 20, 22 and 23 were presented in [3] (although 23 appeared in a 1909
book by Nielsen [14, pg. 105]). Formulas 21 and 25 were found by the author, using the
PSLQ program. Formulas for π log 2 and G were first derived by Broadhurst, although the
specific explicit formulas given here (24 and 26) were found by the author in the course
of this research.

6. Degree 3 Binary Formulas

ζ(3) =
1

7 · 28
P (3, 212, 24, (3 · 211,−21 · 211, 3 · 213, 15 · 211,−3 · 29, 3 · 210,

3 · 28, 0,−3 · 210,−21 · 27,−192,−3 · 29,−96,−21 · 25,−3 · 27, 0,

24, 48,−12, 120, 48,−42, 3, 0)) (27)

log3 2
.
=

1

256
P (3, 212, 24, (0, 3 · 213,−27 · 212, 3 · 214, 0, 93 · 29, 0, 3 · 214, 27 · 29,

3 · 29, 0, 75 · 26, 0, 3 · 27, 27 · 26, 3 · 210, 0, 93 · 23, 0, 192,−216,

24, 0, 3)) (28)
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π2 log 2
.
=

1

32
P (3, 212, 24, (0, 9 · 211,−135 · 29, 9 · 211, 0, 99 · 28, 0, 27 · 210, 135 · 26,

9 · 27, 0, 45 · 26, 0, 9 · 25, 135 · 23, 27 · 26, 0, 396, 0, 72,−135, 18, 0, 0)) (29)

π log2 2
.
=

1

256
P (3, 260, 120, (7 · 259,−37 · 260,−63 · 258, 85 · 259, 3861 · 256,

−3357 · 255, 0,−655 · 258, 347 · 254, 79 · 253, 0, 4703 · 252,−7 · 253, 0,

−1687 · 252,−655 · 254, 7 · 251,−4067 · 249, 0,−6695 · 248,−347 · 248,

0, 0,−7375 · 246,−3861 · 246,−37 · 248,−63 · 246, 85 · 247,−7 · 245,

−933 · 245, 0,−655 · 246, 347 · 242,−37 · 244, 875 · 243, 4703 · 240,

−7 · 241, 0, 63 · 240,−3105 · 238, 7 · 239,−4067 · 237, 0, 85 · 239, 441 · 239,

0, 0,−7375 · 234, 7 · 235, 79 · 233,−63 · 234, 85 · 235,−7 · 233,

−3357 · 231,−875 · 233,−655 · 234, 347 · 230,−37 · 232, 0,−167 · 232,

−7 · 229, 0, 63 · 228,−655 · 230,−3861 · 226,−4067 · 225, 0, 85 · 227,

−347 · 224,−375 · 223, 0,−7375 · 222, 7 · 223,−37 · 224, 1687 · 222,

85 · 223,−7 · 221,−3357 · 219, 0,−3105 · 218, 347 · 218,−37 · 220, 0,

4703 · 216, 3861 · 216, 0, 63 · 216,−655 · 218, 7 · 215,−923 · 215, 0,

85 · 215,−347 · 212, 0,−875 · 213,−7375 · 210, 7 · 211,−37 · 212,

−63 · 210,−6695 · 28,−7 · 29,−3357 · 27, 0,−655 · 210,−441 · 29,

−37 · 28, 0, 4703 · 24,−224,−375 · 23, 63 · 24,−655 · 26, 56,−8134,

875 · 23, 85 · 23,−347, 0, 0, 0)) (30)

π3 .
=

1

254
P (3, 260, 120, (5 · 259,−15 · 260,−225 · 258, 95 · 259, 4115 · 256,

−3735 · 255, 0,−685 · 258, 505 · 254, 5 · 253, 0, 5485 · 252,−5 · 253, 0,

−1775 · 252,−685 · 254, 5 · 251,−3945 · 249, 0,−7365 · 248,−505 · 248,

0, 0,−8125 · 246,−4115 · 246,−15 · 248,−225 · 246, 95 · 247,−5 · 245,

−965 · 245, 0,−685 · 246, 505 · 242,−15 · 244, 125 · 246, 5485 · 240,

−5 · 241, 0, 225 · 240,−2835 · 238, 5 · 239,−3945 · 237, 0, 95 · 239,

905 · 238, 0, 0,−8125 · 234, 5 · 235, 5 · 233,−225 · 234, 95 · 235,

−5 · 233,−3735 · 231,−125 · 236,−685 · 234, 505 · 230,−15 · 232, 0,

−165 · 232,−5 · 229, 0, 225 · 228,−685 · 230,−4115 · 226,−3945 · 225,

0, 95 · 227,−505 · 224,−125 · 223, 0,−8125 · 222, 5 · 223,−15 · 224,

1775 · 222, 95 · 223,−5 · 221,−3735 · 219, 0,−2835 · 218, 505 · 218,

−15 · 220, 0, 5485 · 216, 4115 · 216, 0, 225 · 216,−685 · 218, 5 · 215,

−955 · 215, 0, 95 · 215,−505 · 212, 0,−125 · 216,−8125 · 210, 5 · 211,

−15 · 212,−225 · 210,−7365 · 28,−5 · 29,−3735 · 27, 0,−685 · 210,

−905 · 28,−15 · 28, 0, 5485 · 24,−160,−125 · 23, 225 · 24,−685 · 26, 40,

−7890, 125 · 26, 95 · 23,−505, 0, 0, 0)) (31)
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The existence of BBP formulas for these constants was originally established by Broad-
hurst [8]. However, except for 27, which appeared in [5], the specific explicit formulas
listed here were produced by the author’s PSLQ program. The results for π log2 and
π3 were produced by a special parallel version of this program, running on the IBM SP
parallel computer system in the NERSC supercomputer facility at the Lawrence Berkeley
National Laboratory.

7. Degree 4 Binary Formulas

π4 .
=

1

164
P (4, 212, 24, (27 · 211,−513 · 211, 135 · 214,−27 · 211,−27 · 29,

−621 · 210, 27 · 28,−729 · 210,−135 · 211,−513 · 27,−27 · 26,

−189 · 29,−27 · 25,−513 · 25,−135 · 28,−729 · 26, 216,−621 · 24,

−108,−216, 135 · 25,−1026, 27, 0)) (32)

log4 2
.
=

1

205 · 25
P (4, 212, 24, (73 · 212,−2617 · 212, 8455 · 212,−2533 · 212,

−73 · 210,−25781 · 29, 73 · 29,−6891 · 211,−8455 · 29,−2617 · 28,

−73 · 27,−23551 · 26,−73 · 26,−2617 · 26,−8455 · 26,−6891 · 27,

73 · 24,−25781 · 23,−73 · 23,−2533 · 24, 8455 · 23,−10468,

146,−615)) (33)

π2 log2 2
.
=

1

41 · 25
P (4, 212, 24, (121 · 211,−3775 · 211, 10375 · 211,−1597 · 211,

−121 · 29,−3421 · 211, 121 · 28,−7695 · 210,−10375 · 28,−3775 · 27,

−121 · 26,−3539 · 28,−121 · 25,−3775 · 25,−10375 · 25,−7695 · 26,

121 · 23,−3421 · 25,−484,−1597 · 23, 41500,−7550, 121, 0)) (34)

The existence of BBP-type formulas for these constants was originally established by
Broadhurst [8], although the explicit formulas given here were found by the author’s PSLQ
program.

8. Degree 5 Binary Formulas

ζ(5)
.
=

1

62651 · 249
P (5, 260, 120, (279 · 259,−7263 · 260, 293715 · 257,

−13977 · 260,−1153683 · 256, 28377 · 260, 279 · 256, 83871 · 259,

−293715 · 254,−7263 · 256,−279 · 254,−889173 · 253,−279 · 253,

−7263 · 254, 429705 · 252, 83871 · 255, 279 · 251, 28377 · 254,

−279 · 250, 1041309 · 249, 293715 · 248,−7263 · 250, 279 · 248,

1153125 · 247, 1153683 · 246,−7263 · 248, 293715 · 245,−13977 · 248,

−279 · 245, 28377 · 248, 279 · 244, 83871 · 247,−293715 · 242,

−7263 · 244,−1153683 · 241,−889173 · 241,−279 · 241,−7263 · 242,

−293715 · 239, 188811 · 239, 279 · 239, 28377 · 242,−279 · 238,

10



−13977 · 240,−429705 · 237,−7263 · 238, 279 · 236, 1153125 · 235,

279 · 235,−7263 · 236, 293715 · 233,−13977 · 236,−279 · 233,

28377 · 236, 1153683 · 231, 83871 · 235,−293715 · 230,−7263 · 232,

−279 · 230, 16497 · 233,−279 · 229,−7263 · 230,−293715 · 227,

83871 · 231, 1153683 · 226, 28377 · 230,−279 · 226,−13977 · 228,

293715 · 224,−7263 · 226, 279 · 224, 1153125 · 223, 279 · 223,

−7263 · 224,−429705 · 222,−13977 · 224,−279 · 221, 28377 · 224,

279 · 220, 188811 · 219,−293715 · 218,−7263 · 220,−279 · 218,

−889173 · 217,−1153683 · 216,−7263 · 218,−293715 · 215, 83871 · 219,

279 · 215, 28377 · 218,−279 · 214,−13977 · 216, 293715 · 212,

−7263 · 214, 1153683 · 211, 1153125 · 211, 279 · 211,−7263 · 212,

293715 · 29, 1041309 · 29,−279 · 29, 28377 · 212, 279 · 28,

83871 · 211, 429705 · 27,−7263 · 28,−279 · 26,−889173 · 25,

−279 · 25,−7263 · 26,−293715 · 23, 83871 · 27, 279 · 23,

28377 · 26,−2307366,−13977 · 24, 293715,−29052, 279, 0)) (35)

log5 2
.
=

1

2021 · 252
P (5, 260, 120, (2783 · 259,−32699 · 262, 7171925 · 257,

−187547 · 261,−41252441 · 256, 9391097 · 257, 2783 · 256,

52183 · 265,−7171925 · 254,−32699 · 258,−2783 · 254,

−29483621 · 253,−2783 · 253,−32699 · 256, 17037475 · 252,

52183 · 261, 2783 · 251, 9391097 · 251,−2783 · 250,

38246123 · 249, 7171925 · 248,−32699 · 252, 2783 · 248,

41307505 · 247, 41252441 · 246,−32699 · 250, 7171925 · 245,

−187547 · 249,−2783 · 245, 9391097 · 245, 2783 · 244,

52183 · 253,−7171925 · 242,−32699 · 246,−41252441 · 241,

−29483621 · 241,−2783 · 241,−32699 · 244,−7171925 · 239,

12188517 · 239, 2783 · 239, 9391097 · 239,−2783 · 238,

−187547 · 241,−17037475 · 237,−32699 · 240, 2783 · 236,

41307505 · 235, 2783 · 235,−32699 · 238, 7171925 · 233,

−187547 · 237,−2783 · 233, 9391097 · 233, 41252441 · 231,

52183 · 241,−7171925 · 230,−32699 · 234,−2783 · 230,

5881627 · 230,−2783 · 229,−32699 · 232,−7171925 · 227,

52183 · 237, 41252441 · 226, 9391097 · 227,−2783 · 226,

−187547 · 229, 7171925 · 224,−32699 · 228, 2783 · 224,

41307505 · 223, 2783 · 223,−32699 · 226,−17037475 · 222,

−187547 · 225,−2783 · 221, 9391097 · 221, 2783 · 220,
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12188517 · 219,−7171925 · 218,−32699 · 222,−2783 · 218,

−29483621 · 217,−41252441 · 216,−32699 · 220,−7171925 · 215,

52183 · 225, 2783 · 215, 9391097 · 215,−2783 · 214,−187547 · 217,

7171925 · 212,−32699 · 216, 41252441 · 211, 41307505 · 211, 2783 · 211,

−32699 · 214, 7171925 · 29, 38246123 · 29,−2783 · 29, 9391097 · 29,

2783 · 28, 52183 · 217, 17037475 · 27,−32699 · 210,−2783 · 26,

−29483621 · 25,−2783 · 25,−32699 · 28,−7171925 · 23, 52183 · 213,

2783 · 23, 9391097 · 23,−82504882,−187547 · 25, 7171925,

−32699 · 24, 2783, 30315)) (36)

π2 log3 2
.
=

1

2021 · 253
P (5, 260, 120, (21345 · 259,−464511 · 261, 47870835 · 257,

−1312971 · 261,−236170815 · 256, 1579179 · 262, 21345 · 256,

286131 · 265,−47870835 · 254,−464511 · 257,−21345 · 254,

−173704605 · 253,−21345 · 253,−464511 · 255, 94128645 · 252,

286131 · 261, 21345 · 251, 1579179 · 256,−21345 · 250,

215120589 · 249, 47870835 · 248,−464511 · 251, 21345 · 248,

236128125 · 247, 236170815 · 246,−464511 · 249, 47870835 · 245,

−1312971 · 249,−21345 · 245, 1579179 · 250, 21345 · 244,

286131 · 253,−47870835 · 242,−464511 · 245,−236170815 · 241,

−173704605 · 241,−21345 · 241,−464511 · 243,−47870835 · 239,

56870019 · 239, 21345 · 239, 1579179 · 244,−21345 · 238,

−1312971 · 241,−94128645 · 237,−464511 · 239, 21345 · 236,

236128125 · 235, 21345 · 235,−464511 · 237, 47870835 · 233,

−1312971 · 237,−21345 · 233, 1579179 · 238, 236170815 · 231,

286131 · 241,−47870835 · 230,−464511 · 233,−21345 · 230,

1950735 · 234,−21345 · 229,−464511 · 231,−47870835 · 227,

286131 · 237, 236170815 · 226, 1579179 · 232,−21345 · 226,

−1312971 · 229, 47870835 · 224,−464511 · 227, 21345 · 224,

236128125 · 223, 21345 · 223,−464511 · 225,−94128645 · 222,

−1312971 · 225,−21345 · 221, 1579179 · 226, 21345 · 220,

56870019 · 219,−47870835 · 218,−464511 · 221,−21345 · 218,

−173704605 · 217,−236170815 · 216,−464511 · 219,−47870835 · 215,

286131 · 225, 21345 · 215, 1579179 · 220,−21345 · 214,−1312971 · 217,

47870835 · 212,−464511 · 215, 236170815 · 211, 236128125 · 211,

21345 · 211,−464511 · 213, 47870835 · 29, 215120589 · 29,−21345 · 29,

1579179 · 214, 21345 · 28, 286131 · 217, 94128645 · 27,−464511 · 29,
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−21345 · 26,−173704605 · 25,−21345 · 25,−464511 · 27,

−47870835 · 23, 286131 · 213, 21345 · 23, 1579179 · 28,−472341630,

−1312971 · 25, 47870835,−464511 · 23, 21345, 0)) (37)

π4 log 2
.
=

1

2021 · 250
P (5, 260, 120, (5157 · 259,−89127 · 261, 7805295 · 257,

−195183 · 261,−32325939 · 256, 1621107 · 259, 5157 · 256,

37287 · 265,−7805295 · 254,−89127 · 257,−5157 · 254,

−24620409 · 253,−5157 · 253,−89127 · 255, 12255165 · 252,

37287 · 261, 5157 · 251, 1621107 · 253,−5157 · 250,

29192697 · 249, 7805295 · 248,−89127 · 251, 5157 · 248,

32315625 · 247, 32325939 · 246,−89127 · 249, 7805295 · 245,

−195183 · 249,−5157 · 245, 1621107 · 247, 5157 · 244,

37287 · 253,−7805295 · 242,−89127 · 245,−32325939 · 241,

−24620409 · 241,−5157 · 241,−89127 · 243,−7805295 · 239,

5866263 · 239, 5157 · 239, 1621107 · 241,−5157 · 238,

−195183 · 241,−12255165 · 237,−89127 · 239, 5157 · 236,

32315625 · 235, 5157 · 235,−89127 · 237, 7805295 · 233,

−195183 · 237,−5157 · 233, 1621107 · 235, 32325939 · 231,

37287 · 241,−7805295 · 230,−89127 · 233,−5157 · 230,

480951 · 233,−5157 · 229,−89127 · 231,−7805295 · 227,

37287 · 237, 32325939 · 226, 1621107 · 229,−5157 · 226,

−195183 · 229, 7805295 · 224,−89127 · 227, 5157 · 224,

32315625 · 223, 5157 · 223,−89127 · 225,−12255165 · 222,

−195183 · 225,−5157 · 221, 1621107 · 223, 5157 · 220,

5866263 · 219,−7805295 · 218,−89127 · 221,−5157 · 218,

−24620409 · 217,−32325939 · 216,−89127 · 219,−7805295 · 215,

37287 · 225, 5157 · 215, 1621107 · 217,−5157 · 214,−195183 · 217,

7805295 · 212,−89127 · 215, 32325939 · 211, 32315625 · 211, 5157 · 211,

−89127 · 213, 7805295 · 29, 29192697 · 29,−5157 · 29, 1621107 · 211,

5157 · 28, 37287 · 217, 12255165 · 27,−89127 · 29,−5157 · 26,

−24620409 · 25,−5157 · 25,−89127 · 27,−7805295 · 23, 37287 · 213,

5157 · 23, 1621107 · 25,−64651878,−195183 · 25, 7805295,

−89127 · 23, 5157, 0)) (38)

As before, the existence of BBP-type formulas for these constants was originally es-
tablished by Broadhurst [8], although the explicit formulas given here were found by the
author’s PSLQ program.
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9. Ternary Formulas

No ternary BBP formulas (i.e. formulas with b = 3m for some integer m > 0) were
presented in [3], but several have subsequently been discovered. Here are some that are
now known:

log 2 =
2

3
P (1, 9, 2, (1, 0)) (39)

√
3 tan−1

(√
3

7

)
=

1

6
P (1, 9, 3, (3,−1, 0)) (40)

π
√

3 =
1

9
P (1, 36, 12, (81,−54, 0,−9, 0,−12,−3,−2, 0,−1, 0, 0)) (41)

log 3 =
1

729
P (1, 36, 6, (729, 81, 81, 9, 9, 1)) (42)

π2 =
2

27
P (2, 36, 12, (243,−405, 0,−81,−27,−72,−9,−9, 0,

−5, 1, 0)) (43)

log2 3 =
1

729
P (2, 36, 12, (4374,−13122, 0,−2106,−486,−243 · 23,

−162,−234, 0,−162, 18,−8)) (44)

π
√

3 log 3 =
2

27
P (2, 36, 12, (243,−405,−486,−135, 27, 0,−9, 15, 18,

5,−1, 0)) (45)

Formulas 39 and 40 appeared in [5]. Formulas 41 through 45 are due to Broadhurst
[7].

10. Other BBP-Type Formulas

Here are several interesting results in other bases, together with two formulas for an
arbitrary base b. Here τ = (1 +

√
5)/2 is the golden mean.

log
(

9

10

)
=

−1

10
P (1, 10, 1, (1)) (46)

25

2
log




781

256

(
57 − 5

√
5

57 + 5
√

5

)√
5

 = P (1, 55, 5, (0, 5, 1, 0, 0)) (47)

1√
τ

tan−1

(
51/4

√
τ

233 − 329
√

5

5938

)
+

√
τ tan−1

(
51/4

√
τ

939 + 281
√

5

5938

)

=
1

2 · 513/4
P (1, 55, 5, (125,−25, 5,−1, 0)) (48)

log
(

1111111111

387420489

)
=

1

108
P (1, 1010, 10, (108, 107, 106, 105, 104, 103,

102, 101, 1, 0)) (49)

b2 log

(
b2 + b + 1

b2 − 2b + 1

)
= 3P (1, b3, 3, (b, 1, 0)) (50)
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bb−2 log

(
bb − 1

(b − 1)b

)
= P (1, bb, b, (bb−2, bb−3, · · · , b2, b, 1)) (51)

Formula 46 appeared in [3] (although it is an elementary observation). Formulas 47
through 51 appeared in [5].

11. Zero Relations
Below are some of the known BBP zero relations, or in other words BBP-type formulas

that evaluate to zero. These have been discovered using the author’s PSLQ program, and
most are new with this compilation. For brevity, not all of the zero relations that have
been found are listed here — some of the larger ones are omitted — although the author
has a complete set. Further, zero relations that are merely a rewriting of another on the
list, such as by expanding a relation with base b and length n to one with base br and
length rn, are not included in these listings. For convenience, however, the total number
of linearly independent zero relations for various choices of s, b and n, including rewritings
and unlisted relations, are tabulated in Table 1.

Knowledge of these zero relations is essential for finding formulas such as those above
using integer relation programs (such as PSLQ). This is because unless these zero relations
are excluded from the search for a conjectured BBP-type formula, the search may only
recover a zero relation. A zero relation may be excluded from a integer relation search by
setting the input vector element whose position corresponds to the zero relation’s smallest
nonzero element to some value that is not linearly related to the other entries of the input
vector.

For example, note in Table 1 below that there are five zero relations with s = 1, b = 212

and n = 24. These relations are given below as formulas 54 through 58. If one is searching
for a conjectured formula with these parameters using PSLQ, then these five zero relations
must be excluded. This can be done by setting entries 19 through 23 of the PSLQ input
vector to e, e2, e3, e4 and e5, respectively, where e is the base of natural logarithms.
Positions 19 through 23 are specified here because in relations 54 through 58 below, the
smallest nonzero entries appear in positions 23, 22, 21, 20 and 19, respectively. Powers of e
are specified here because, as far as anyone can tell (although this has not been rigorously
proven), e is not a polylogarithmic constant in the sense of this paper, and thus it and its
powers are not expected to satisfy BBP-type linear relations (this assumption is confirmed
by extensive experience using the author’s PSLQ programs). In any event, it is clear that
many other sets of transcendental constants could be used here.

Note that by simply adding a rational multiple of one of these zero relations to one the
formulas above (with matching arguments s, b and n), one can produce a valid variant of
that formula. Clearly infinitely many variants can be produced in this manner.

Aside from the discussion in [9], these zero relations are somewhat mysterious — it
is not understood why zero relations occur for certain s, b and n, but not others. It
should also be noted that in most but not all cases where a zero relation has been found,
nontrivial BBP-type formulas have been found with the same parameters. This suggests
that significant BBP-type results may remain to be discovered. In any event, it is hoped
that this compilation will spur some additional insight into these questions.
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No. zero No. zero
s b n relations s b n relations
1 16 8 1 1 248 48 1
1 64 6 1 1 248 96 5
1 28 16 1 1 252 104 1
1 212 12 1 1 254 54 1
1 212 24 5 1 256 112 1
1 216 32 1 1 260 60 1
1 218 18 1 1 260 120 7
1 220 40 3 2 212 24 2
1 224 24 1 2 220 40 1
1 224 48 5 2 224 48 2
1 228 56 1 2 236 72 2
1 230 30 1 2 240 80 1
1 230 60 1 2 248 96 2
1 232 64 1 2 260 120 4
1 236 36 1 3 212 24 1
1 236 72 5 3 224 48 1
1 240 80 3 3 236 72 1
1 242 42 1 3 248 96 1
1 242 84 1 3 260 120 2
1 244 88 1 4 260 120 1
1 36 12 2

Table 1: Zero relation counts for various parameters

Note that all of these formulas except for the last two are binary formulas (i.e. b = 2m

for some integer m > 0).

0 = P (1, 16, 8, (−8, 8, 4, 8, 2, 2,−1, 0)) (52)

0 = P (1, 64, 6, (16,−24,−8,−6, 1, 0)) (53)

0
.
= P (1, 212, 24, (0, 0, 211,−211, 0,−29, 256,−3 · 28, 0, 0,−64,−128, 0,−32,−32,

−48, 0,−24,−4,−8, 0,−2, 1, 0)) (54)

0
.
= P (1, 212, 24, (−29,−210, 210, 7 · 28, 256, 3 · 28, 64, 3 · 27, 0, 0, 0, 0, 8,−32,−16,

12,−4, 4,−1, 8, 0,−1, 0, 0)) (55)

0
.
= P (1, 212, 24, (29,−210,−29, 256, 0, 256, 64, 3 · 27, 64, 0, 0, 0,−8,−16, 8, 12, 0,

4,−1, 2,−1, 0, 0, 0)) (56)

0
.
= P (1, 212, 24, (3 · 29,−3 · 210, 0,−256, 0, 0, 192, 3 · 27, 0, 0, 0,−64,−24,−48,

0,−12, 0, 0,−3, 2, 0, 0, 0, 0)) (57)

0
.
= P (1, 212, 24, (−210, 3 · 29, 29, 256, 128, 128,−64,−192, 0, 32, 0, 32, 16, 16,

16



−8, 0,−2,−2, 1, 0, 0, 0, 0, 0)) (58)

0
.
= P (1, 220, 40, (0, 218,−218, 217, 0,−5 · 216, 216,−5 · 215, 0,−216,−214, 213,

0,−5 · 212,−214,−5 · 211, 0, 210,−210,−211, 0,−5 · 28, 256,−5 · 27, 0, 64,−64,

32, 0, 0, 16,−40, 0, 4, 16, 2, 0,−5, 1, 0)) (59)

0
.
= P (1, 220, 40, (218,−219, 0,−217, 3 · 215, 216, 0, 0, 214, 213, 0,−213,−212, 212,

5 · 210, 0, 210,−211, 0,−29,−256, 256, 0, 0,−96,−128, 0,−32,−16,−24,

0, 0, 4,−8,−5,−2,−1, 1, 0, 0)) (60)

0
.
= P (1, 220, 40, (−218, 3 · 218, 0,−218,−13 · 215, 0, 0, 5 · 215,−214, 213, 0,−214,

212, 0, 5 · 210, 5 · 211,−210, 3 · 210, 0, 3 · 29, 256, 0, 0, 5 · 27, 13 · 25,

192, 0,−64, 16, 40, 0, 40,−4, 12,−5,−4, 1, 0, 0, 0)) (61)

0
.
= P (2, 212, 24, (0, 210,−3 · 210, 29, 0, 210, 0, 9 · 27, 3 · 27, 64, 0, 128, 0, 16, 48, 72,

0, 16, 0, 2,−6, 1, 0, 0)) (62)

0
.
= P (2, 212, 24, (−211, 0, 17 · 211,−17 · 210, 29,−15 · 210,−256,−63 · 28,

−17 · 28, 0, 64,−5 · 28, 32, 0,−17 · 25,−63 · 24,−8,−240, 4,−68, 68,

0,−1, 0)) (63)

0
.
= P (2, 220, 40, (219,−3 · 220,−218, 13 · 218, 3 · 220,−3 · 218, 216,

−25 · 216, 215,−3 · 216,−214, 13 · 214,−213,−3 · 214,−3 · 215,−25 · 212,

211,−3 · 212,−210,−3 · 212,−29,−3 · 210, 256,−25 · 28,−3 · 210,

−3 · 28,−64, 13 · 26,−32,−192, 16,−25 · 24, 8,−48, 96, 52,−2,−12, 1, 0))(64)

0
.
= P (3, 212, 24, (211,−19 · 211, 5 · 214,−211,−29,−23 · 210, 256,−27 · 210,

−5 · 211,−19 · 27,−64,−7 · 29,−32,−19 · 25,−5 · 28,−27 · 26, 8,

−23 · 24,−4,−8, 160,−38, 1, 0)) (65)

0
.
= P (1, 729, 12, (0, 81,−162, 0, 27, 36, 0, 9, 6, 4,−1, 0)) (66)

0
.
= P (1, 729, 12, (243,−324,−162,−81, 0,−36,−9, 0, 6,−1, 0, 0)) (67)

Relation 52 appeared in [3]. Relation 53 and 54 were given in [5]. Relations 55 through
67 were found by the author using his PSLQ program, and are new with this compilation.

12. Curiosities
There are two other formulas worth mentioning, although neither, technically speak-

ing, is a BBP-type formula. The first formula employs the irrational base b = 2/τ = 2τ−2,
where τ is the golden mean (see Section 9):

3π
√

τ

55/4
=

1

29
P (1, 2/τ, 10, (256τ, 128τ 3, 64τ 4, 32τ 4, 0,−8τ 6,−4τ 8,−2τ 9, 0)) (68)

The second example of this class is the formula

1√
19

cos−1
(

9

10

)
=

1

10

∞∑

k=0

Dk

10k

(
1

k + 1

)
(69)
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where the D coefficients satisfy the recurrence D0 = D1 = 1, and Dk+1 = Dk − 5Dk−1 for
k ≥ 2. It is possible that a variant of the original BBP algorithm can be fashioned for this
case, on the idea that the Dk comprise a Lucas sequence, and as is known, evaluations
of sequence elements mod n can be effected via exponential-ladder methods. These two
formulas appeared in [5].
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